

California Corequisite Initiative

Ken Sorey

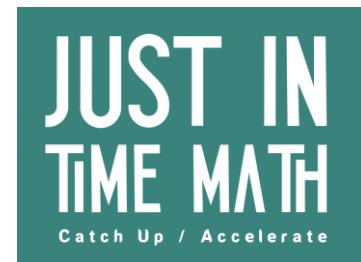
Executive Director, NLET

ken.sorey@nlet.org

Barbara Illowsky, PhD

Math Faculty, De Anza College (Retired)

barbara.illowsky@gmail.com


Richard Rasiej

Math Adjunct, Santa Monica
College

richard.rasiej@nlet.org

California Corequisite Initiative

- ❖ An initiative funded by the CCCCO to co-develop math tools and strategies to better support corequisites in CA Community Colleges.
- ❖ Cornerstone of the initiative is Just In Time Math - a competency-based math platform that effectively locates students in “the math space.”
- ❖ Campuses can gain support for identifying and implementing more effective strategies and tools to support students in Transfer-Level Math.
- ❖ Multiple ways to engage...

How to Engage

- ❖ Campus participation, Math Department and Student Services, to strengthen corequisites and the conditions to make them work
 - ~ 8 - 10 Colleges
- ❖ Faculty participation in system-wide Work Group (Design Team) to improve and pilot the *Just In Time Math* platform – with stipends
 - ~ 10 Math Faculty from BSTEM and Statistics (a mix)
- ❖ CTE and SMEs in three career pathways to serve as a Design Team to adapt a *WorkReady Math* platform – with stipends
 - ~ 6 Faculty, 2 from each pathway

Brief History & Use – JITM

- ❖ Developed at National University (with NLET and Pragya)
 - ~ 10,000 students have used it
- ❖ Efficient way to see what students already know and where they need additional support / instruction
- ❖ Competency/Micro-Competency based, short formative assessments, OER
- ❖ Pre-Alg to Pre-Calculus (and Stats) – plus adaptable to WorkReady Math
- ❖ Not a product, but a smart library that is customizable and curatable
- ❖ Some CCC's have already piloted it

Student View

Demo Section: Math Phase 1 and 2 Combined

[hide toc](#) [curate](#)

Demo Section: Math Phase 1 and 2 Combined - Table...

38.52%

⊕ C1: Integers and Rational Numbers 33.33%

⊖ C2: Real Numbers

⊕ MC11: Identify Real Numbers

⊕ MC12: Representation on number line

⊕ MC13: Determining greater of two numbers

⊕ MC14: Simplifying Numeric Expressions

⊕ C3: Exponents and Order of Operations 75.00%

⊕ C4: Variable Expressions

⊕ C5: Linear Equations in One Variable

⊕ C6: Linear Inequalities in One Variable

⊕ C7: Translating Sentences into Equations

C1: Integers and Rational Numbers

Competency1: Perform Operations with Integers and Rational Numbers

Student View

C12 > MC70 > KC: Graph using x and y-intercepts

Done

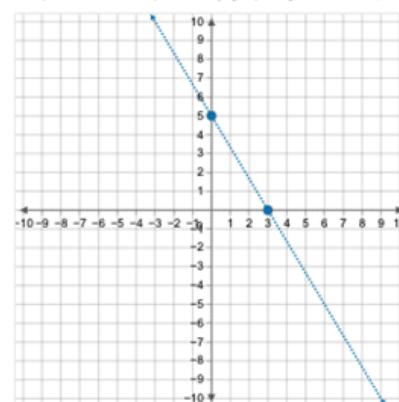
1 of 5

Graph the linear equation using its x- and y- intercepts. Enter each intercept as an ordered pair of the form (x, y) with parentheses and a comma.

$$5x + 3y = 15$$

The x-intercept is $(x, y) = 1 \boxed{}$.

The y-intercept is $(x, y) = 2 \boxed{}$.


- Question 1
- Question 2
- Question 3
- Question 4
- Question 5

Correct answers:

1 (3, 0) 2 (0, 5)

◀ Next ▶

Graph the linear equation by graphing its **x- and y-intercepts**.

Student View

Fundamentals of Mathematics I

3/9

KC: Graph linear functions - Result

prev

next

Knowledge Check Results

Attempt 1 of 1

Aug 17, 2023 2:57:24 PM

0 / 8

Show Report

Next Step

Your score was less than 80%, but don't worry! Please take the opportunity to engage in the learning activities for this micro-competency before completing the next set of knowledge check questions.

Graphing Linear Equations

Graphing Linear Equations

Start Learning

Student View

Mathispower4u: Ex 2: Graph a Linear Equation in Standard Form Using the Intercepts [\[rate this resource\]](#)

Ex 2: Graph a Linear Equation in Standard Form Using the Intercepts

Watch later Share

Example: Determine the Intercepts of a Line and Graph.

$2x - y = 5$

$$\begin{array}{|c|c|} \hline x & y \\ \hline \frac{5}{2} & 0 \\ \hline 0 & \\ \hline \end{array} \rightarrow x\text{-int: } \left(\frac{5}{2}, 0\right)$$

$x\text{-intercept} \rightarrow y = 0$

$$\frac{2x}{2} = \frac{5}{2}$$

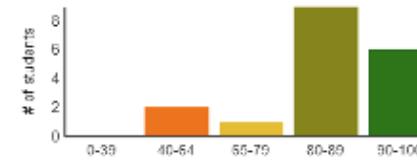
$$x = \frac{5}{2}$$

Watch on

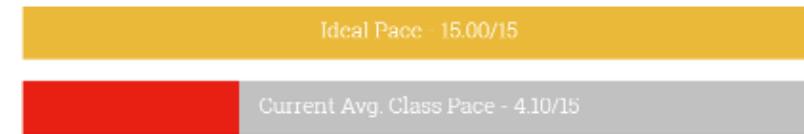
Faculty View

MTH12A-30253-2005: MTH12A Algebra I

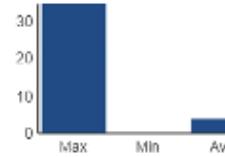
curate


show TOC

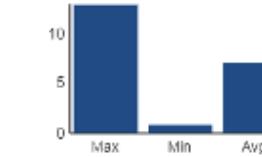
Performance


Average Score

85.39%



Progress


Competencies

Activity

Learning Activity in Hours

Knowledge Check Activity in Hours

Announcements

Faculty View

MTH12A-30253-2005: MTH12A Algebra I

curate show TOC

Reports :: MTH12A-30253-2005: MTH12A Algebra I

export

Name	MTH12A-30253-2005: Score	C1: Integers and Rational Numbers Score	C2: Real Numbers Score	C3: Exponents and Order of Operations Score	C4: Variable Expressions Score	C5: Linear Equations in One Variable Score	C6: Linear Inequalities in One Variable Score	C7: Translating Word Problems into Equations Score	C8: Functions and Graphs Score
Class Average	85.39%	86.64%	93.53%	88.00%	78.51%	88.01%	79.79%	85.00%	80.00%
	92.65%	94.00%	100.00%	88.00%	79.73%	100.00%	96.25%	97.50%	88.00%
	74.34%	90.00%	95.00%	84.00%	85.27%	80.00%	86.25%	62.50%	10.00%
	85.40%	92.00%	95.00%	80.00%	78.91%	85.71%	93.75%	75.00%	90.00%
	86.27%	84.00%	90.00%	88.00%	86.09%	82.86%	86.25%	86.67%	80.00%
This student is included in class average calculation, click to exclude from the class average calculation.									
	91.33%	92.00%	100.00%	84.00%	90.00%	91.43%	96.25%	95.00%	90.00%
	80.66%	82.00%	95.00%	88.00%	80.73%	85.71%	52.50%	N/A	80.00%
	87.86%	100.00%	100.00%	100.00%	80.00%	100.00%	80.00%	55.00%	80.00%

Who Should Participate – Faculty Who...

- Teach either Pre-calculus, College Algebra, Statistics or another first transfer level course
- Are finding challenges with AB 1705 implementation
- Have students that need supplemental support while in the current course
- Are interested in FREE online support system
- Want individualized support for their students
- Who want to dig deeper and assist in developing formative assessment questions and curate OER resources OR...
- Who want to pilot a finished tool OR...
- Who are interested in CTE focused math support

Why participate

- Improve support for your students
- Pinpoint what topics you need to review & what topics just a few students need
- Join a community of colleagues working together
- We have stipends:
 - Level one – participate on the Work Group, meetings, feedback, strategy
 - Level two – join the Design Team to curate content, improve assessments, pilot the tool
 - Level two (CTE) – help us create/curate material to contextualize math for 3 CTE pathways – co-design WorkReady Math

Next steps

- Contact Ken Sorey with any questions – ken.sorey@nlet.org
- Download the CCI description [flyer](#) for sharing with colleagues.
- Complete the CCI Application on behalf of your campus, by Sept 15

[Apply!](#)